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Onthe basis of probabilistic concepts, a simple method of weighted averaging 
of the boundary temperatures is developed for the construction of the steady 
thermal field inregions of complex geometry. 

The problem of constructing a steady temperature field U(M) within a region ~ at speci- 
fied temperature at the boundary 8~ of this region reduces to solving the Laplace equation 

Au = o (1) 

with the boundary condition of the first kind (Dirichlet condition) 

U[o~ = ~ (M), ( 2 )  

This typical problem of the derivation of a function is very important in physical and tech- 
nical applications. It may be interpreted as a problem of finding the electrostatic poten- 
tial within a region from the known potential distribution at the boundary. Another inter- 
pretation is as a model of a soap film. The urgent problem of determining the productivity 
of an oil field also reduces to the solution of a Dirichlet problem [i]. Analogous problems 
arise in metrology, topography, in the interpretation of various geophysical experimental 
data, and elsewhere. 

For geometrically trivial regions, it is simple to construct an accurate solution of 
the Dirichlet problem. However, in practically important cases, regions of complex config- 
uration must be dealt with. As a rule, the difficulties arising here may be successfully 
overcome by numerical methods: the finite-difference method (FDM) with an adaptive computa- 
tional template for working at complex boundaries; or the finite-element method (FEM), which 
works well in the solution of difficult engineering problems. 

It is supposed that the simplest algorithm solving problem (i), (2) will be given by 
the Monte carlo method [2], based on the principles of random motion between the points 
of an integer lattice. In fact, the computational procedure of the Monte Carlo method is 
very simple, but randomization of the calculation requires a sufficiently powerful com- 
puter fittedwith a special device for generating random codes. 
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Fig. i. Zigzag path of Monte Carlo method; stop-frame meth- 
od of simplex rotation; adaptive FDM template. 

Fig. 2. Calculation points A i at a plate and four SRM stop 
frames. 
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TABLE I. Temperature Values (~ at Calcu- 
lation Points of Plate 

Calctn. 
points 

A 1 
A~ 
A3 
A~ 
A5 

Accurate 
solution 

46,879 
21,094 
44,531 
71,094 
38,058 

Solution by 

SRM AT 

48,944 48,041 
21,787 21,612 
45,656 44,782 
71,796 71,481 
38,742 38,658 

The Dirichlet problem is a model problem for the development of new methods and nhe 
testing of new ideas, which may then be extended to the general theory of partial differ- 
ential equations. In the present work, a new method combining the fruitful ideas of ~he 
Monte Carlo method and the simplest finite-element approximations is used to solve the 
Dirichlet problem in regions of complex configuration. 

In the standard Monte Carlo method, the temperature at point A of region ~ (Fig. i) 
is determined by the formula 

N 

U(A)= 1 ~m~U~, (3) 
m 

where  N i s  t h e  number  o f  p o i n t s  a t  t h e  b o u n d a r y  o f  t h e  r e g i o n ;  m i s  t h e  t o t a l  number  (,f 
p a t h s  o f  t h e  p a r t i c l e  s t a r t i n g  f rom p o i n t  A; m~ i s  t h e  number  o f  a p a r t i c l e  a b s o r p t i o I ~  
a t  p o i n t  8. The w e l l - k n o w n  B e r n o u l l i  t h e o r e m  [3] g u a r a n t e e s  t h e  c o n v e r g e n c e  ( i n  terms: o f  
t h e  p r o b a b i l i t y )  o f  a s e q u e n c e  o f  r e l a t i v e  f r e q u e n c i e s  mB/m t o  some l i m i t  r  wh ich ,  as  
shown in  [ 4 ] ,  i s  t h e  g e o m e t r i c  p r o b a b i l i t y .  I t  was a l s o - e s t a b l i s h e d  in  [4] t h a t  t h e  p r o b -  
a b i l i t i e s  o f  a b s o r p t i o n  o f  t h e  t r a v e l i n g  p a r t i c l e  a t  p o i n t s  o f  a s i m p l e x  e l e m e n t  c o i n c i d e  
precisely with the baricentric coordinates of the simplex. This means that, in solving 
the Dirichlet problem, attention may be confined to a single simplex element (Fig. I), 
offering the possibility of rotating it so that new boundary points are systematically in- 
cluded in the calculation. To determine the temperature at point A, it is sufficiently 
accurate to use several "stop frames" fixing various positions of the simplex and the~ to 
average the results obtained. In each stop frame in the plane problem, the following 
formula is used instead of Eq. (3) 

3 

U (A) = ~ ~U~. (4) 
B=I 

In three-dimensional problems, this formula includes four terms, since the tetrahedron is 
rotated in the region ~. 

The simplex-rotation method (SRM) is limitingly simple and suitable for regions of 
very general form; it has rapid convergence and, in contrast to the Monte Carlo method, 
may easily be realized on a microcalculator. An elementary a posteriori estimate of the 
SRM error was obtained in [4] on the basis of dispersion of the target function. 

As an example, consider the problem [5] of a steady temperature distribution in a 
square plate, at the sides x = 0 and x = 1 of which temperatures of 0 and 100~ respeative- 
ly, are maintained; at the side y = 0, the temperature increases linearly, while at y = 1 it 
increases according to a quadratic-parabola law. The Dirichlet problem was solved in [5] 
by the grid method with 25 points (9 internal points). The accurate solution obtained by 
a direct method is obtained after 30 iterations of the simultaneous-displacement method, 
16 iterations of the successive-displacement method, and nine iterations of the method of 
successive upper relaxation. Practically the same accuracy is obtained by SRM using no 
more than four stop frames (Fig. 2). The calculation results are given in Table i, which 
gives an idea of the SRM accuracy. 

Probabilistic models significantly change our concepts regarding the nature of the com- 
putational algorithms, offering new possibilities for further simplification. For example, 
the orthogonal computational template of "cross" type used in the standard grid method may 
be adapted for the solution of the Dirichlet problem in regions of complex geometry, it is 
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sufficient here to regulate the length of the template arm close to the curvilinear bound- 
ary. This possibility is ensured by simple change in the rules of random particle motion 
over orthogonal trajectories. In Fig. i, this adaptive FDM template is "tied" to point B. 
If the adaptive template (AT) is also systematically rotated around the point B, the con- 
tributions of other boundary points may be taken into account. As in SRM, several stop 
frames are used to achieve acceptable accuracy, with subsequent averaging of the results. 
Table 1 gives the results of calculations using AT for four stop frames. Comparison of the 
two simplified approaches shows that the additional path in the random-motion scheme en- 
riches the information at the given point and, with the same number of stop frames, increas- 
es the calculation accuracy, as a rule. 

NOTATION 

U(M), temperature at point M of region ~; 8~, boundary of region; US, temperature at 
boundary point 8; ms/m, relative frequency of absorption of moving particle at point 8; 
~8' baricentric coordinates of point A in simplex. 
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THERMAL HYSTERESIS IN NONLINEAR MEDIA 

O. N. Shablovskii UDC 536.2.01 

One-dimensional thermal relaxation processes in mediawith nonlinear thermo- 
physical properties are treated. Dynamic hysteresis is investigated theo- 
retically in continuous and discontinuous nonstationary temperature fields. 
Boundary conditions are analyzed, for which a high-flow hysteresis process 
is realized. A quantitative estimate is given of irreversible variations in 
the material thermal state. Examples are given of constructing hysteresis 
branches. New properties are established for thermal shock waves propagating 
along the relaxing background. 

It is well-known that hysteresis effects are observed in various physical processes 
(magnetic hysteresis [I], elastic hysteresis [2], etc.), and are characterized by a non- 
unique dependence between the quantities determining the material state and the external 
conditions of action. As applied to heat and mass transfer, these effects were noted in 
[3-6]. The mathematical methods of analyzing systems with nonlinear hysteresis were dis- 
cussed in [7]. 

The purpose of the present study is construction of examples of analytic description 
of dynamic thermal hysteresis, realized during fast flow processes, both in continuous and 
discontinuous thermal fields. The mathematical model is based on the energy equation and 
on the generalized Fourier law [8, 9], written in dimensionless form 
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